تحلیل ساختارهای کوواریانس یا روابط خطی ساختاری
حداقل مربعات جرئی (PLS)
تکنیک معادلات ساختاری آمیزه دوتحلیل است:
تحلیل عاملی تائیدی (مدل اندازه گیری)
تحلیل مسیر –تعمیم تحلیل رگرسیون (مدل ساختاری)
بنابراین شمادراین پژوهش برخی ازمواردرابه طورمستقیم اندازهگیری می کنید(بخش اندازه گیری مدل)که عموماً همان گویه های پرسشنامه است و برخی ازمواردراباترکیب این گویه ها بدست آورده و روابط آنها را می سنجید (بخش تحلیل مسیر مدل) تا بتوانید مدل نهایی خود را رسم کنید.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
به بیان دیگر مدل یابی معادلات ساختاریک تکنیک تحلیل چند متغیری بسیار کلی و نیرومند از خانواده رگرسیون چند متغیری و به بیان دقیق تر بسط «مدل خطی کلی» ۴ است که به پژوهشگر امکان میدهد مجموعه ای از معادلات رگرسیون را به گونه هم زمان مورد آزمون قرار دهد.
مدل یابی معادله ساختاری یک رویکرد جامع برای آزمون فرضیه هایی درباره روابط متغیرهای مشاهده شده و مکنون است که گاه تحلیل ساختاری کوواریانس، مدل یابی علّی و گاه نیز لیزرل نامیده شده است. اما اصطلاح غالب در این روزها، مدل یابی معادله ساختاری یا به گونه خلاصه SEM است
یکی از مفاهیم اساسی که در آمار کاربردی در سطح متوسط وجود دارد. اثر انتقالهای جمعپذیر و ضربپذیر در فهرستی از اعداد است یعنی اگر هر یک از اعدادیک فهرست در مقدار ثابت K ضرب شود میانگین اعداد در همان K ضرب می شود و به این ترتیب، انحراف معیار استاندارد در مقدار قدر مطلق K ضرب خواهد شد. نکته این است که اگر مجموعه ای از اعداد x با مجموعه دیگری از اعداد y از طریق معادله y=4x مرتبط باشند در این صورت واریانس y باید ۱۶ برابر واریانس x باشد و بنابراین از طریق مقایسه واریانس های x و y می توانید به گونه غیر مستقیم این فرضیه را که y و x ازطریق معادله y=4x با هم مرتبط هستند را بیازمایید.
این اندیشه از طریق تعدادی معادلات خطی از راه های مختلف به چندین متغیر مرتبط با هم تعمیم داده می شود. هرچند قواعد آن پیچیده تر و محاسبات دشوارتر می شود، اما پیام کلی ثابت می ماند. یعنی با بررسی واریانسها و کوواریانسهای متغیرها می توانید این فرضیه را که «متغیرها از طریق مجموعه ای از روابط خطی با هم مرتبط اند» را بیازمایید.
توسعه مدل های علّی متغیرهای مکنون معرف همگرایی سنتهای پژوهشی نسبتا مستقل در روان سنجی، اقتصادسنجی، زیست شناسی و بسیاری از روش های قبلا آشناست که آنها را به شکل چهارچوبی وسیع در می آورد. بحث در خصوص مفاهیم متغیرهای مکنون در مقابل متغیرهای مشاهده شده و خطا از موضوعات مورد بحث SEM می باشد.
۳-۶-۱ شاخص های آزمون های برازندگی مدل SEM
با آنکه انواع گوناگون آزمون ها که به گونه کلی شاخص های برازندگی نامیده می شوند. پیوسته در حال مقایسه، توسعه و تکامل می باشند، اما هنوز درباره حتی یک آزمون بهینه نیز توافق همگانی وجود ندارد. نتیجه آن است که مقاله های مختلف، شاخص های مختلفی را ارائه کرده اند و حتی نگارش های مشهوربرنامه های SEM مانند نرم افزارهای lisrel, Amos, EQS نیز تعداد زیادی از شاخص های برازندگی به دست می دهند. به منظور تحلیل داده های و بدست آوردن شاخص ها در این پژوهش از نرم افزار Amos استفاده شده است. این شاخص ها به شیوه های مختلفی طبقه بندی شده اند که یکی از عمده ترین آنها طبقه بندی به صورت مطلق، نسبی و تعدیل یافته میباشد. در ادامه به توضیح برخی از این شاخصها می پردازیم.
۳-۶-۲ شاخص GFI AGFI, یا شاخص برازندگی
این شاخص به حجم نمونه وابسته نیست و نشان می دهد که مدل تا چه حد نسبت به عدم وجود آن، برازندگی بهتری دارد. این شاخص، به واقع مقدار نسبی واریانس ها و کوواریانس ها را به گونه مشترک از طریق مدل ارزیابی می کند و دامنه تغییرات آن بین صفر تا یک است. چون GFI نسبت به سایر شاخص ها اغلب بزرگتر است، برخی از پژوهشگران نقطه برش ۹۵/۰ را برای آن پیشنهاد کرده اند. برپایه قرارداد مقدار GFI باید برابر یا بزرگتر از ۹/۰ باشد تامدل پذیرفته شود.
شاخص برازندگی دیگرAGFI یا همان مقدار تعدیل یافته شاخص GFI برای درجه آزادی می باشد. این مشخصه معادل باکاربرد میانگین مجذورات به جای مجموع مجذورات در صورت و مخرج GFI-1 است. مقداراین شاخص نیز بین صفر و یک می باشد. برپایه قرارداد مقدار AGFI باید برابر یا بزرگتر از ۹/۰ باشد تا مدل پذیرفته شود.
۳-۶-۳ شاخص خطای مجموع مجذورا ت میانگین RMSEA
این شاخص، ریشه میانگین مجذورات تقریب می باشد. شاخص RMSEA برای مدل های خوب برابر ۰۵/۰ یا کمتر است. مدلهایی که RMSEA آنها ۱/۰ باشد برازش ضعیفی دارند. برپایه قرارداد مقدار RMSEA اگر کوچکتر از ۰٫۱ باشد برازندگی مدل پذیرفته می شود.
۳-۶-۴مجذور کای
آزمون مجذور کای (خی دو) این فرضیه مدل مورد نظر هماهنگ با الگوی همپراشی بین متغیرهای مشاهده شده است را می آزماید، کمیت خی دو بسیار به حجم نمونه وابسته می باشد و نمونه بزرگ کمیت خی دو را بیش از آنچه که بتوان آن را به غلط بودن مدل نسبت داد، افزایش می دهد. مقدار کای دو باید از لحاظ آمار معنادار باشد یعنی از میزان جدول بزرگتر باشد.
۳-۶-۵ شاخص نرم شده برازندگی NFI
شاخص NFI (که شاخص بنتلر بونت هم نامیده می شود) برای مقادیربالای ۹/۰ قابل قبول و نشانه برازندگی مدل است. این شاخص از طریق مقایسه یک مدل به اصطلاح مستقل که درآن بین متغیرها هیچ رابطه ای نیست با مدل پیشنهادی مورد نظر، مقدار بهبود را نیز می آزماید. شاخص NFI بزرگتر از ۹/۰ قابل قبول و نشانه برازندگی مدل است.
۳-۶-۶ شاخص برازندگی فزاینده IFI
این شاخص طبق قرارداد باید حداقل مقدار ۹/۰ را داشته باشد تا مدل پذیرفته شود.
۳-۶-۷ شاخص برازندگی CFI
این شاخص برازندگی مدل موجود را با مدل صفر که در آن فرض می شود متغیر مکنون موجود در مدل ناهمبسته اند (مدل استقلال) مورد مقایسه قرار می دهددر واقع این شاخص مدل مورد نظر را با مدل بدون رابطه هایش مقایسه می کند. CFI از لحاظ معنا مانند NFI است با این تفاوت که برای حجم گروه نمونه جریمه می دهد. مقدار آن بر پایه قرار داد باید حداقل ۹/۰ باشد.
شاخص های دیگری نیز در خروجی نرم افزار دیده می شوند که برخی مثل AIC,CAICECVA, برای تعیین برازنده ترین مدل از میان چند مدل مورد توجه قرار می گیرند. برای مثال مدلی که دارای کوچکترین AIC,CAIC,ECVA باشد برازنده تراست. برخی از شاخص ها نیز به شدت وابسته حجم نمونه اند و در حجم نمونه های بالا می توانند معنا داشته باشند.
۳-۶-۸ روش تحلیل داده ها در SEM
از جمله تحلیلهای همبستگی، تحلیل ماتریس کوواریانس یا ماتریس همبستگی است. با توجه به هدفپژوهش و تحلیلهائی که روی این ماتریس صورت میگیرد به دو دسته اصلی تقسیم میشود: تحلیل عاملی[۵۵] و مدل معادلات ساختاری [۵۶]SEM. هر دو این تحلیلها از طریق نرم افزار لیزرل قابل انجام است. مدل معادلات ساختاری SEM یا یک ساختار علی خاص بین مجموعهای از سازههای غیرقابل مشاهده است. یک مدل معادلات ساختاری از دو مولفه تشکیل شده است: یک مدل ساختاری که ساختار علی بین متغیرهای پنهان را مشخص میکند و یک مدل اندازهگیری که روابطی بین متغیرهای پنهان و متغیرهای مشاهده شده را تعریف میکند.
سازهها یا متغیرهای پنهان و متغیرهای مشاهده شده دو مفهوم اساسی در تحلیلهای آماری بویژه بحث تحلیل عاملی و مدل یابی معدلات ساختاری هستند. متغیرهای پنهان که از آنها تحت عنوان متغیر مکنون نیز یاد میشود متغیرهائی هستند که به صورت مستقیم قابل مشاهده نیستند. برای مثال متغیر انگیزه را در نظر بگیرید. انگیزه فرد را نمیتوان به صورت مستقیم مشاهده کرد و سنجید. به همین منظور برای سنجش متغیرهای پنهان از سنجهها یا گویههائی استفاده میکنند که همان سوالات پرسشنامه را تشکیل میدهند. این سنجهها متغیرهای مشاهده شده هستند. مدل کلی معادلات ساختاری از قوانینی پیروی میکند که شامل:
۱- هر بیضی در مدل معادلات ساختاری نشاندهنده یک متغیر پنهان است.
۲- هر مستطیل در مدل معادلات ساختاری نشاندهنده یک متغیر قابل مشاهده است.
۳- از هر متغیر پنهان (بیضی) به هر متغیرقابل مشاهده (مستطیل) پیکانی وجود دارد که با نماد λ نشان داده میشود. به λ وزنهای عاملی یا بار عاملی گفته میشود. طبق گفته کلاین بارهای عاملی بزرگتر از ۳/۰ نشاندهنده با اهمیت بودن رابطه است.
۴- هر مقدار ε نیز نشاندهنده خطا در پیش بینی متغیرهای پنهان از یکدیگر است.
۵- ضریب رابطه علی بین دو متغیر پنهان مستقل و وابسته با γ نشان داده میشود.
۶- ضریب رابطه علی بین دو متغیر پنهان وابسته با β نشان داده میشود.
۳-۶-۹ بار عاملی[۵۷]
قدرت رابطه بین عامل (متغیر پنهان) و متغیر قابل مشاهده بوسیله بار عاملی نشان داده میشود. بار عاملی مقداری بین صفر و یک است. اگر بار عاملی کمتر از ۳/۰ باشد رابطه ضعیف درنظر گرفته شده و از آن صرفنظر میشود. بارعاملی بین ۳/۰ تا ۶/۰ قابل قبول است و اگر بزرگتر از ۰٫۶ باشد خیلی مطلوب است. بار عاملی در شکل با λ نشان داده شده است. در تحلیل عاملی متغیرهائی که یک متغیر پنهان (عامل) را میسنجند، باید با آن عامل، بار عاملی بالا و با سایر عاملها، بار عاملی پائین داشته باشند. جهت بررسی معنادار بودن رابطه بین متغیرها از آماره آزمون t یا همان t-value استفاده میشود. چون معناداری در سطح خطای ۰٫۰۵ بررسی میشود بنابراین اگر میزان بارهای عاملی مشاهده شده با آزمون t-value از ۹۶/۱ کوچکتر محاسبه شود، رابطه معنادار نیست و در نرم افزار لیزرل با رنگ قرمز نمایش داده خواهد شد.
آزمون t تک نمونه ای
اگر فرضیه ای در خصوص میانگین یک جامعه آماری طراحی شود با بهره گرفتن از مراحل آزمون فرض آماری می توان صحت یا سقم فرضیه را در سطح معنی داری تعیین کرد که از ازمون t تک نمونه ای برای این منظور می توان استفاده کرد. در این پژوهش جهت تبیین و تفسیر متغیر های مستقل و وابسته و اینکه هر متغیر با چه وضعیتی در جامعه آماری وجود دارد از آزمون t تک نمونه ای استفاده شده است.
تحلیل واریانس یک طرفه[۵۸]
به کمک تحلیل واریانس یک طرفه به بررسی و تحلیل تفاوت بین بیش از دو میانگین نمونه ای می پردازیم. در واقع با انجام آزمون تحلیل واریانس میخواهیم بررسی کنیم آیا بین میانگین های نمونه ای که از جامعه های مختلف گرفتیم تفاوت های واقعی وجود دارد و یا آن مقدار تفاوت قابل اغماض بوده و می توان آنرا معلول تصادف دانست در این پژوهش از تحلیل واریانس جهت مقایسه بخشهای مختلف جامعه آماری استفاده می شود.
۳-۷٫ساختار پرسش نامه:
سوالات مربوط به مهارت های PC فرد(۱-۹)
تمایلات فردی | رضایت مشتری | کیفیت خدمات ارائه شده |